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Experiment Reproducibility and NLP Pipeline Debugging
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Experiment Reproducibility in NLP



Seeds

@® Randomness in NLP can stem from factors like data shuffling or
parameter initialization, and seeding helps mitigate variability.

@® Set random seeds for libraries like numpy, torch, and random to
ensure that experiments yield consistent results across runs.

import random
import numpy as np
import torch

def set_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)

set_seed(42) # Set the seed for reproducibility



Environment Control

@® Specify software and library versions, e.g.
O Python
O PyTorch
O Hugging Face
B Transformers
Bl Datasets
Hl etc
@® Docker containers or environment management tools, e.g
O Conda
O Venv
@® Can help create replicable environments



Version Control for Code and Data

@® Git is essential for tracking code changes
@® Tools like DVC help manage data files
@® Combined, they allow for exact recreation of any experiment version.



Tracking Tools

@® Tensorboard and Aim allow experiment logging:
O Metric and hyperparameter tracking
O Visualizing metrics e.g. loss, accuracy
O And many more experiment details
@® They also provide experiment comparison features, which are
useful for understanding parameter change effects.



Best Practices

@® Keep all configurations in a central location (e.g., config files).

@® Use detailed documentation for experiment setups.

® Log all hyperparameters, model configurations, and other details for
every run.

# Log configuration details
config = {
"seed": 42,
"model_name": "distilbert-base-uncased",
"batch_size": 8,
"learning_rate": 1e-5,
"num_epochs": 3



Experiment Tracking Tools



Tensorboard

® Visualizations cover
O arange of debugging
O reproducibility needs
B metrics tracking
B model graph visualization
B hyperparameter tuning insights



Aim

@® A lightweight, open-source alternative to Tensorboard
@® Offers
O an intuitive interface
O experiment comparison
O interactive search
O customized metrics logging
O focuses on simplifying reproducibility and debugging.



Aim - Core Components

@® Aim SDK:
O Python interface to define and track any object
O Query tracked metadata with fully supported pythonic
expressions
O Integrations with essential ML tools and frameworks
® Aim Storage:
O Modular (runs isolation - easily copy, move, delete runs)
O Extendable (easily store any python object)
® Aim Ul:
O Metadata management and visualization
O Deep comparison and exploration of multi-dimensional metadata



Aim - What to cover

@® Setup: Local and remote tracking, the Run class
@® Tracking: Tracking objects such as Metric, Text, Audio, and Image
@® Adapters: Integrating Aim into an existing project
@® Migrate: Importing runs from other trackers into Aim
® Ul
O Runs Management: Run explorer, bookmarks and tags
O Explorers: Metrics, Parameters, and Text explorers



More in depth content for Experiment Tracking tools

https://tamohannes.com/docs/ExperimentTracking.pdf



https://tamohannes.com/docs/ExperimentTracking.pdf

NLP Pipeline Debugging Techniques



Pipeline Monitoring

@® Continuously monitor intermediate blocks outputs, such as:
@® Data preprocessor ins and outs
@® Observe lengths/shapes and print random samples

# Inspect a single tokenization example
sample_text = "This is a test sentence for tokenization."
tokenized_output = tokenizer(sample_text, padding="max_length", truncation=True, max_length=128)

print("Tokenized Output:", tokenized_output)



Architecture Monitoring

@® Monitor intermediate outputs e.g. tokenization, embeddings,

attention weights
@® Ensure each stage works correctly by passing test tensors and

comparing the output with the expected output

# Inspect a single tokenization example

sample_text = "This is a test sentence for tokenization."
tokenized_output = tokenizer(sample_text, padding="max_length", truncation=True, max_length=128)

print("Tokenized Output:", tokenized_output)



Error Analysis

@® |dentify common types of errors by using evaluation metrics and
visualization tools

@® Misclassifications, for instance, can reveal where a model’s
understanding might diverge from human intuition.



Running a Sanity Check on a Small Subset of Data

® |If the model can overfit
on a Sma” su bset Of small_dataloader = Dataloader(tokenized_datasets["train"].select(range(10)), batch_size=2)
data, it,S more |ike|y for epoch in range(2):

model.train()

that everything iS total_loss = 0

. for batch in small_dataloader:
Worklng aS eXpeCted. inputs = {k: v.to(device) for k, v in batch.items() if k != "label"}

labels = batch["label"].to(device)

outputs = model(*xinputs, labels=labels)
loss = outputs.loss

optimizer.zero_grad()
loss.backward()
optimizer.step()

total_loss += loss.item()

avg_loss = total_loss / len(small_dataloader)
print(f"Sanity Check Epoch {epoch+1}, Loss: {avg_loss:.4f}")



Gradient and Loss Inspection

for epoch in range(num_epochs):

® Use Experiment Tracking tool modeL. train()

total_loss = 0

to monitor the fO”OWing Over for batch in train_dataloader:

{k: v.to(device) for k, v in batch.items() if k != "label"}
batch["1label"].to(device)

inputs

time: tabels
4 outputs = model(**inputs, labels=labels)
O Gradlents loss = outputs.loss
O Losses optimizer.zero_grad()

loss.backward()

O Model parameter updates # Graient check

for name, param in model.named_parameters():

@® Sudden spikes or drops might i arcss il abs () mean(hdtent)
. . . . . . writer.add_scalar(f"Gradient/{name}", avg_grad, epoch)
iIndicate issues like vanishing eintaer.seenl)
Or eXpIOding gradients. total_loss += loss.item()

avg_loss = total_loss / len(train_dataloader)

print(f"Epoch {epoch+1}/{num_epochs}, Loss: {avg_loss:.4f}")
writer.add_scalar("Loss/train", avg_loss, epoch)
run.track(avg_loss, name="train_loss", epoch=epoch)



Interpretability Tools

@® For deeper debugging, interpretability libraries like LIME and SHAP
allow analysis of model behavior, highlighting which input features

most influence predictions.
@® This can uncover biases or unexpected dependencies in the model.



