
NLP4Web 
Practice Session 12

Experiment Reproducibility and NLP Pipeline Debugging

Hovhannes Tamoyan
tamohannes.com



In previous sessions we covered



Experiment Reproducibility in NLP



● Randomness in NLP can stem from factors like data shuffling or 
parameter initialization, and seeding helps mitigate variability. 

● Set random seeds for libraries like numpy, torch, and random to 
ensure that experiments yield consistent results across runs. 

Seeds



● Specify software and library versions, e.g. 
○ Python 
○ PyTorch 
○ Hugging Face 

■ Transformers 
■ Datasets 
■ etc 

● Docker containers or environment management tools, e.g 
○ Conda 
○ Venv 

● Can help create replicable environments

Environment Control



● Git is essential for tracking code changes 
● Tools like DVC help manage data files 
● Combined, they allow for exact recreation of any experiment version.

Version Control for Code and Data



● Tensorboard and Aim allow experiment logging: 
○ Metric and hyperparameter tracking 
○ Visualizing metrics e.g. loss, accuracy 
○ And many more experiment details 

● They also provide experiment comparison features, which are 
useful for understanding parameter change effects.

Tracking Tools



● Keep all configurations in a central location (e.g., config files). 
● Use detailed documentation for experiment setups. 
● Log all hyperparameters, model configurations, and other details for 

every run.

Best Practices



Experiment Tracking Tools



● Visualizations cover 
○ a range of debugging 
○ reproducibility needs 

■ metrics tracking 
■ model graph visualization 
■ hyperparameter tuning insights

Tensorboard



● A lightweight, open-source alternative to Tensorboard 
● Offers 

○ an intuitive interface 
○ experiment comparison 
○ interactive search 
○ customized metrics logging 
○ focuses on simplifying reproducibility and debugging.

Aim



Aim - Core Components

● Aim SDK: 
○ Python interface to define and track any object 
○ Query tracked metadata with fully supported pythonic 

expressions 
○ Integrations with essential ML tools and frameworks 

● Aim Storage: 
○ Modular (runs isolation - easily copy, move, delete runs) 
○ Extendable (easily store any python object) 

● Aim UI: 
○ Metadata management and visualization 
○ Deep comparison and exploration of multi-dimensional metadata



Aim - What to cover

● Setup: Local and remote tracking, the Run class 
● Tracking: Tracking objects such as Metric, Text, Audio, and Image 
● Adapters: Integrating Aim into an existing project 
● Migrate: Importing runs from other trackers into Aim 
● UI 

○ Runs Management: Run explorer, bookmarks and tags 
○ Explorers: Metrics, Parameters, and Text explorers



More in depth content for Experiment Tracking tools

https://tamohannes.com/docs/ExperimentTracking.pdf 

https://tamohannes.com/docs/ExperimentTracking.pdf


NLP Pipeline Debugging Techniques



● Continuously monitor intermediate blocks outputs, such as: 
● Data preprocessor ins and outs 
● Observe lengths/shapes and print random samples

Pipeline Monitoring



● Monitor intermediate outputs e.g. tokenization, embeddings, 
attention weights 

● Ensure each stage works correctly by passing test tensors and 
comparing the output with the expected output

Architecture Monitoring



● Identify common types of errors by using evaluation metrics and 
visualization tools 

● Misclassifications, for instance, can reveal where a model’s 
understanding might diverge from human intuition.

Error Analysis



● If the model can overfit 
on a small subset of 
data, it’s more likely 
that everything is 
working as expected.

Running a Sanity Check on a Small Subset of Data



● Use Experiment Tracking tool 
to monitor the following over 
time: 
○ Gradients 
○ Losses 
○ Model parameter updates 

● Sudden spikes or drops might 
indicate issues like vanishing 
or exploding gradients.

Gradient and Loss Inspection



● For deeper debugging, interpretability libraries like LIME and SHAP 
allow analysis of model behavior, highlighting which input features 
most influence predictions. 

● This can uncover biases or unexpected dependencies in the model.

Interpretability Tools


