NLP4Web
Practice Session 12

Experiment Reproducibility and NLP Pipeline Debugging

In previous sessions we covered

Language Models and Common Architectures

Transformer-Based Models

Encoder-Decoder

LSTM
Long Short-Term Enc;dE;ri_Only 5
Bi La Neural L: LLL Hemery Instruction-Tuned
igram Language eural Language — ——— -
Model Model HectuEg el GRU Decoder-Only |_—— CchawPT
Network Gated Recurrent D
GPT-2
Unit

1958s 2000s 1986 1997 2014 2017 2018 2019 2019 2022
Andrey Markov Yoshua Bengio David Rumelhart Sepp Hochreiter Kyunghyun Cho Vaswani et al Google OpenAl Google OpenAl
Claude Shannon Geoffrey Hinton Jurgen Schmidhuber

Ronald J. Williams

Experiment Reproducibility in NLP

Seeds

@® Randomness in NLP can stem from factors like data shuffling or
parameter initialization, and seeding helps mitigate variability.

@® Set random seeds for libraries like numpy, torch, and random to
ensure that experiments yield consistent results across runs.

import random
import numpy as np
import torch

def set_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)

set_seed(42) # Set the seed for reproducibility

Environment Control

@® Specify software and library versions, e.g.
O Python
O PyTorch
O Hugging Face
B Transformers
Bl Datasets
Hl etc
@® Docker containers or environment management tools, e.g
O Conda
O Venv
@® Can help create replicable environments

Version Control for Code and Data

@® Git is essential for tracking code changes
@® Tools like DVC help manage data files
@® Combined, they allow for exact recreation of any experiment version.

Tracking Tools

@® Tensorboard and Aim allow experiment logging:
O Metric and hyperparameter tracking
O Visualizing metrics e.g. loss, accuracy
O And many more experiment details
@® They also provide experiment comparison features, which are
useful for understanding parameter change effects.

Best Practices

@® Keep all configurations in a central location (e.g., config files).

@® Use detailed documentation for experiment setups.

® Log all hyperparameters, model configurations, and other details for
every run.

Log configuration details
config = {
"seed": 42,
"model_name": "distilbert-base-uncased",
"batch_size": 8,
"learning_rate": 1e-5,
"num_epochs": 3

Experiment Tracking Tools

Tensorboard

® Visualizations cover
O arange of debugging
O reproducibility needs
B metrics tracking
B model graph visualization
B hyperparameter tuning insights

Aim

@® A lightweight, open-source alternative to Tensorboard
@® Offers
O an intuitive interface
O experiment comparison
O interactive search
O customized metrics logging
O focuses on simplifying reproducibility and debugging.

Aim - Core Components

@® Aim SDK:
O Python interface to define and track any object
O Query tracked metadata with fully supported pythonic
expressions
O Integrations with essential ML tools and frameworks
® Aim Storage:
O Modular (runs isolation - easily copy, move, delete runs)
O Extendable (easily store any python object)
® Aim Ul:
O Metadata management and visualization
O Deep comparison and exploration of multi-dimensional metadata

Aim - What to cover

@® Setup: Local and remote tracking, the Run class
@® Tracking: Tracking objects such as Metric, Text, Audio, and Image
@® Adapters: Integrating Aim into an existing project
@® Migrate: Importing runs from other trackers into Aim
® Ul
O Runs Management: Run explorer, bookmarks and tags
O Explorers: Metrics, Parameters, and Text explorers

More in depth content for Experiment Tracking tools

https://tamohannes.com/docs/ExperimentTracking.pdf

https://tamohannes.com/docs/ExperimentTracking.pdf

NLP Pipeline Debugging Techniques

Pipeline Monitoring

@® Continuously monitor intermediate blocks outputs, such as:
@® Data preprocessor ins and outs
@® Observe lengths/shapes and print random samples

Inspect a single tokenization example
sample_text = "This is a test sentence for tokenization."
tokenized_output = tokenizer(sample_text, padding="max_length", truncation=True, max_length=128)

print("Tokenized Output:", tokenized_output)

Architecture Monitoring

@® Monitor intermediate outputs e.g. tokenization, embeddings,

attention weights
@® Ensure each stage works correctly by passing test tensors and

comparing the output with the expected output

Inspect a single tokenization example

sample_text = "This is a test sentence for tokenization."
tokenized_output = tokenizer(sample_text, padding="max_length", truncation=True, max_length=128)

print("Tokenized Output:", tokenized_output)

Error Analysis

@® |dentify common types of errors by using evaluation metrics and
visualization tools

@® Misclassifications, for instance, can reveal where a model’s
understanding might diverge from human intuition.

Running a Sanity Check on a Small Subset of Data

® |If the model can overfit
on a Sma” su bset Of small_dataloader = Dataloader(tokenized_datasets["train"].select(range(10)), batch_size=2)
data, it,S more |ike|y for epoch in range(2):

model.train()

that everything iS total_loss = 0

. for batch in small_dataloader:
Worklng aS eXpeCted. inputs = {k: v.to(device) for k, v in batch.items() if k != "label"}

labels = batch["label"].to(device)

outputs = model(*xinputs, labels=labels)
loss = outputs.loss

optimizer.zero_grad()
loss.backward()
optimizer.step()

total_loss += loss.item()

avg_loss = total_loss / len(small_dataloader)
print(f"Sanity Check Epoch {epoch+1}, Loss: {avg_loss:.4f}")

Gradient and Loss Inspection

for epoch in range(num_epochs):

® Use Experiment Tracking tool modeL. train()

total_loss = 0

to monitor the fO”OWing Over for batch in train_dataloader:

{k: v.to(device) for k, v in batch.items() if k != "label"}
batch["1label"].to(device)

inputs

time: tabels
4 outputs = model(**inputs, labels=labels)
O Gradlents loss = outputs.loss
O Losses optimizer.zero_grad()

loss.backward()

O Model parameter updates # Graient check

for name, param in model.named_parameters():

@® Sudden spikes or drops might i arcss il abs () mean(hdtent)
. writer.add_scalar(f"Gradient/{name}", avg_grad, epoch)
iIndicate issues like vanishing eintaer.seenl)
Or eXpIOding gradients. total_loss += loss.item()

avg_loss = total_loss / len(train_dataloader)

print(f"Epoch {epoch+1}/{num_epochs}, Loss: {avg_loss:.4f}")
writer.add_scalar("Loss/train", avg_loss, epoch)
run.track(avg_loss, name="train_loss", epoch=epoch)

Interpretability Tools

@® For deeper debugging, interpretability libraries like LIME and SHAP
allow analysis of model behavior, highlighting which input features

most influence predictions.
@® This can uncover biases or unexpected dependencies in the model.

